25 research outputs found

    Amphibian and Avian Karyotype Evolution: Insights from Lampbrush Chromosome Studies

    Get PDF
    Amphibian and bird karyotypes typically have a complex organization, which makes them difficult for standard cytogenetic analysis. That is, amphibian chromosomes are generally large, enriched with repetitive elements, and characterized by the absence of informative banding patterns. The majority of avian karyotypes comprise a small number of relatively large macrochromosomes and numerous tiny morphologically undistinguishable microchromosomes. A good progress in investigation of amphibian and avian chromosome evolution became possible with the usage of giant lampbrush chromosomes typical for growing oocytes. Due to the giant size, peculiarities of organization and enrichment with cytological markers, lampbrush chromosomes can serve as an opportune model for comprehensive high-resolution cytogenetic and cytological investigations. Here, we review the main findings on chromosome evolution in amphibians and birds that were obtained using lampbrush chromosomes. In particular, we discuss the data on evolutionary chromosomal rearrangements, accumulation of polymorphisms, evolution of sex chromosomes as well as chromosomal changes during clonal reproduction of interspecies hybrids

    New insights into chromomere organization provided by lampbrush chromosome microdissection and high-throughput sequencing

    Get PDF
    Giant lampbrush chromosomes (LBCs) typical for growing oocytes of various animal species are characterized by a specific chromomere-loop appearance and massive transcription. Chromomeres represent universal units of chromatin packaging at LBC stage. While quite good progress has been made in investigation of LBCs structure and function, chromomere organization still remains poorly understood. To extend our knowledge on chromomere organization, we applied microdissection to chicken LBCs. In particular, 31 and 5 individual chromomeres were dissected one by one along the macrochromosome 4 and one microchromosome, respectively. The data on genomic context of individual chromomeres was obtained by high-throughput sequencing of the corresponding chromomere DNA. Alignment of adjacent chromomeres to chicken genome assembly provided information on chromomeres size and genomic boarders, indicating that prominent marker chromomeres are about 4–5 Mb in size, while common chromomeres of 1.5–3.5 Mb. Analysis of genomic features showed that the majority of chromomere-loop complexes combine gene-dense and gene-poor regions, while massive loopless DAPI-positive chromomeres lack genes and are remarkably enriched with different repetitive elements. Finally, dissected LBC chromomeres were compared with chromatin domains (topologically associated domains [TADs] and A/B-compartments), earlier identified by Hi-C technique in interphase nucleus of chicken embryonic fibroblasts. Generally, the results obtained suggest that chromomeres of LBCs do not correspond unambiguously to any type of well-established spatial domains of interphase nucleus in chicken somatic cells

    Generation of two iPSC lines (FAMRCi007-A and FAMRCi007-B) from patient with Emery-Dreifuss muscular dystrophy and heart rhythm abnormalities carrying genetic variant LMNA p.Arg249Gln.

    Get PDF
    Human iPSC lines were generated from peripheral blood mononuclear cells of patient carrying LMNA mutation associated with Emery–Dreifuss muscular dystrophy accompanied by atrioventricular block and paroxysmal atrial fibrillation. Reprogramming factors OCT4, KLF4, SOX2, CMYC were delivered using Sendai virus transduction. iPSCs were characterized in order to prove the pluripotency markers expression, normal karyotype, ability to differentiate into three embryonic germ layers. Generated iPSC lines would be useful model to investigate disease development associated with genetic variants in LMNA gene

    Rare Case of Ulnar-Mammary-Like Syndrome With Left Ventricular Tachycardia and Lack of TBX3 Mutation

    No full text
    “Heart–hand” type syndromes represent a group of rare congenital conditions that combine cardiac pathology (structural defect or arrhythmic disorder) and limb abnormality. Significant clinical variability and genetic heterogeneity typical for such syndromes complicate correct diagnosis, prognosis, and appropriate genetic counseling of the affected families. By now, only single genes have been unambiguously determined as a genetic cause of heart–hand syndromes and phenotypically similar conditions. In the present study, we report on a 25-year-old Russian female patient with a clinical picture resembling ulnar-mammary syndrome (UMS). Principal clinical manifestations included heart septal fibrosis and non-sustained left ventricular tachycardia combined with fifth finger camptodactyly, hypoplastic breast, abnormal teeth, and mental retardation. Target Sanger sequencing and array-based comparative genome hybridization confirmed the lack of pathogenic mutations and large-scale deletions in TBX3 (12q24.21), the only gene known to be associated with UMS cases to date. Based on the results of whole-exome sequencing, 14 potential candidate variants were identified. Among them, a novel missense variant in SYNM gene (exon 1, c.173C > T, p.A58V), encoding intermediate filament protein synemin was characterized. Until the present, no association between SYNM mutations and congenital clinical syndromes has been reported. At the same time, taking into account synemin tissue-specific expression profiles and available data on abnormal knock-out mice phenotypes, we propose SYNM as a candidate gene contributing to the UMS-like phenotype. Further comprehensive functional studies are required to evaluate possible involvement of SYNM in genesis of complex heart-limb pathology

    Congenital Heart Defects Are Rarely Caused by Mutations in Cardiac and Smooth Muscle Actin Genes

    No full text
    Background. Congenital heart defects (CHDs) often have genetic background due to missense mutations in cardiomyocyte-specific genes. For example, cardiac actin was shown to be involved in pathogenesis of cardiac septum defects and smooth muscle actin in pathogenesis of aortic aneurysm in combination with patent ductus arteriosus (PDA). In the present study, we further searched for mutations in human α-cardiac actin (ACTC1) and smooth muscle α-actin (ACTA2) genes as a possible cause of atrial septum defect type II (ASDII) and PDA. Findings. Total genomic DNA was extracted from peripheral blood of 86 individuals with ASDs and 100 individuals with PDA. Coding exons and flanking intron regions of ACTC1 (NM_005159.4) and ACTA2 (NM_001613) were amplified by PCR with specific primers designed according to the corresponding gene reference sequences. PCR fragments were directly sequenced and analyzed. Sequence analysis of ACTC1 and ACTA2 did not identify any nucleotide changes that altered the coding sense of the genes. In ACTC1 gene, we were able to detect one previously described nucleotide polymorphism (rs2307493) resulting in a synonymous substitution. The frequency of this SNP was similar in the study and control group, thus excluding it from the possible disease-associated variants. Conclusions. Our results confirmed that the mutations in ACTC1 gene are rare (at least <1%) cause of ASDII. Mutations in ACTA2 gene were not detected in patients with PDA, thus being excluded from the list of frequent PDA-associated genetic defects

    Education opportunities for older adults in the region of Ústí

    Get PDF
    5 Summary This thesis presents education opportunities for older adults. First part of the thesis is focused on an old age characteristic and all changes that this period of life brings, describes position of older adults in the society and elderly education specifics. Final chapter of this part of the thesis is dedicated to the list of institutions, where older adults can be educated. The thesis is written in a sense of comparison of scholarly sources from both Czech and foreign authors. The second part of this thesis presents empirical study, which was created by quantitative questionnaire survey. Main goal of this part is to find out, which institutions in Region of Ústí, that provides education for older adults, are well known for the respondents. Key words: ageing, elderly education, education opportunities for older adults, old age, Region of Úst

    Image_1_Rare Case of Ulnar-Mammary-Like Syndrome With Left Ventricular Tachycardia and Lack of TBX3 Mutation.TIF

    No full text
    <p>“Heart–hand” type syndromes represent a group of rare congenital conditions that combine cardiac pathology (structural defect or arrhythmic disorder) and limb abnormality. Significant clinical variability and genetic heterogeneity typical for such syndromes complicate correct diagnosis, prognosis, and appropriate genetic counseling of the affected families. By now, only single genes have been unambiguously determined as a genetic cause of heart–hand syndromes and phenotypically similar conditions. In the present study, we report on a 25-year-old Russian female patient with a clinical picture resembling ulnar-mammary syndrome (UMS). Principal clinical manifestations included heart septal fibrosis and non-sustained left ventricular tachycardia combined with fifth finger camptodactyly, hypoplastic breast, abnormal teeth, and mental retardation. Target Sanger sequencing and array-based comparative genome hybridization confirmed the lack of pathogenic mutations and large-scale deletions in TBX3 (12q24.21), the only gene known to be associated with UMS cases to date. Based on the results of whole-exome sequencing, 14 potential candidate variants were identified. Among them, a novel missense variant in SYNM gene (exon 1, c.173C > T, p.A58V), encoding intermediate filament protein synemin was characterized. Until the present, no association between SYNM mutations and congenital clinical syndromes has been reported. At the same time, taking into account synemin tissue-specific expression profiles and available data on abnormal knock-out mice phenotypes, we propose SYNM as a candidate gene contributing to the UMS-like phenotype. Further comprehensive functional studies are required to evaluate possible involvement of SYNM in genesis of complex heart-limb pathology.</p

    Generation of iPSC line from desmin-related cardiomyopathy patient carrying splice site mutation of DES gene

    No full text
    Human iPSC line was generated from patient-specific adipose tissue-derived mesenchymal multipotent stromal cells carrying desmin (DES) gene heterozygous splice site mutation using non-integrative reprogramming method. Reprogramming factors OCT4, KLF4, SOX2, CMYC were delivered using Sendai viruses. iPSCs were characterized by sequencing, karyotype analysis, STR analysis, immunocytochemistry, RT-PCR and teratoma formation
    corecore